Anatomy and physiology
ANATOMY (Upper Body) & PROGRAM DESIGN FOR MUSCULAR FITNESS

LEARNING OBJECTIVES

1. To know the origin, insertion and line of action for the muscles of the upper body.
2. To apply knowledge of anatomy to effective exercises and be able to distinguish between the agonists, antagonists, synergists and stabilizers.
3. To apply an understanding of the advantages and disadvantages of compound versus isolation exercises in the design of resistance training programs.
4. To understand the application of general strength training guidelines in the design of programs.
5. To apply an understanding of a variety of specific resistance training principles commonly used in the design of programs.
MUSCLE ORIGIN, INSERTION & ACTION

ORIGIN: muscle attachment that moves least, generally more proximal (towards mid-line of body).

INSERTION: muscle attachment that moves most, generally more distal (away from mid-line of body).

LINE OF ACTION: An imaginary line that connects the origin to insertion and denotes the joint action(s) caused by the muscle.
Muscular Classifications

AGONIST (prime mover): muscle most directly involved with the movement

ANTAGONIST: muscle opposite to the agonist that assists in joint stabilization and can slow down or stop the intended movement

SYNERGIST: muscle that assists the prime mover in a movement

STABILIZER: muscle that stabilizes a joint; usually contracts isometrically as a joint is moved
PECTORALIS MAJOR

CLAVICULAR HEAD
- **ORIGIN**
 Clavicle, medial half (Anterior)
- **INSERTION**
 Humerus (Proximal Anterior)
 Bicipital Groove (Outer Lip)

STERNAL HEAD
- **ORIGIN**
 Sternum (Anterior)
 Ribs (2nd to 6th), Costal Cartilages
- **INSERTION**
 Humerus (Proximal Anterior)
 Bicipital Groove (Outer Lip)

ACTION
Shoulder:
- Flexion
- Horizontal Adduction
- Internal Rotation
PECTORALIS MINOR

ORIGIN
Ribs (3rd to 5th), anterior surface

INSERTION
Scapula (Superior Anterior)
- Coracoid Process

ACTION
Scapular:
- Protraction/Abduction
- Downward Rotation (During Abduction)
- Depression
The serratus anterior holds the scapula against the thoracic wall. A winged scapula condition indicates a weakness of the serratus anterior.
The anterior deltoid is involved in shoulder abduction when the shoulder is externally rotated. The anterior deltoid is weak in strict horizontal flexion but assists the pectoralis major during shoulder horizontal flexion / shoulder flexion (elbow slightly inferior to shoulders).
The lateral deltoid is involved in shoulder abduction when the shoulder is internally rotated. It is involved in shoulder flexion when the shoulder is internally rotated. It is involved in shoulder transverse abduction (shoulder externally rotated).
The posterior deltoid is the primary shoulder hyperextensor, since the latissimus dorsi does not extend the shoulder beyond anatomical position (aka hyperextension).
TRICEPS BRACHII

ORIGIN
Long Head [1]: lower edge of glenoid cavity of scapula
Lateral Head [2]: lateral posterior surface of humerus
Medial Head [3]: posterior surface of humerus

INSERTION
Ulna (Proximal Posterior) [1, 2, 3]
- Olecranon Process

ACTIONS
Elbow:
- Extension [1, 2, 3]
Shoulder:
- Extension [1]
- Adduction [1]
ROTATOR CUFF MUSCLES

Muscles of the Rotator Cuff:
- Subscapularis
- Supraspinatus
- Infraspinatus
- Teres Minor
SUPRASPINATUS

ORIGIN
Scapula (Superior), Supraspinous fossa

INSERTION
Humerus, Greater Tubercle (Superior)

ACTION
Shoulder:
- Abduction (initiates)
- Stabilization

Most often injured rotator cuff muscle. Inability to smoothly abduct the arm against resistance may indicate a rotator cuff injury. Avoiding full ROM (i.e. not initiating deltoid exercises from fully adducted position) may not allow Supraspinatus to be fully strengthened since it is more fully activated at these initial degrees of shoulder abduction/flexion. Once injured ROM is typically restricted on the shoulder press.

Examples of affected exercises: **Shoulder Press, Upright Row, Lateral Raise**
Example preventative / corrective exercises: **Front Lateral Raise, Lying Lateral Raise**
INFRASPINATUS

ORIGIN
Scapula (Medial), Infraspinous fossa

INSERTION
Humerus, Greater Tuberosity (Posterior)

ACTION
Shoulder:
- External Rotation
- Transverse Abduction
- Posterior Stability

INFRASPINATUS WEAKNESS: Second most often injured rotator cuff muscle. Examples of affected exercises with suggestions for high risk individuals:
- **Bench Press**: Bring bar lower on chest, keeping elbows closer to sides.
- **Chest Press**: Elevate seat so elbows are closer to sides.
Range of motion may need to be limited so elbows do not go behind shoulders
Example preventative / corrective exercises: **Lying External Rotation**, **Rows**
TERES MINOR

ORIGIN
Scapula (Lateral)
 Lateral Border
 Posterior on upper and middle part

INSERTION
Humerus
 Greater Tubercle (Posterior)
 Inferior Facet

ACTION
Shoulder:
 • External Rotation
 • Transverse Abduction
 • Posterior Stability
ORIGIN
Scapula (Anterior)
 - Subscapularis Fossa

INSERTION
Humerus (Proximal Anterior)
 - Lesser Tubercle

ACTION
Shoulder:
 • Internal Rotation
 • Anterior Stability
 • Posterior Stability
TRAPEZIUS

UPPER FIBRES

ORIGIN
Skull (Posterior Inferior) [1]

INSERTION
Clavicle, Lateral Third (Posterior) [1, 2]

MIDDLE FIBRES

ORIGIN
Spine, Cervical Vertebrae (C7)
Spine, Thoracic Vertebrae (T1-3)

INSERTION
Scapula:
- Acromion Process (Medial Border)
- Spine (Superior Border)

LOWER FIBRES

ORIGIN
Spine, Thoracic Vertebrae (T4-12)

INSERTION
Scapula, Spine (Inferior Medial)

ACTION
- Scapular Elevation [1, 2]
- Cervical Extension [1]
- Neck Extension, Lateral Flexion, Rotation [1]

ACTION
Scapula:
- Adduction
- Elevation
- Upward Rotation

ACTION
Scapula:
- Upper Rotation
- Adduction
- Depression
- Spine (Thoracic), weak ext.
LEVATOR SCAPULAE

ORIGIN
Cervical Vertebrae (Upper 3 or 4)

INSERTION
Scapula, Medial Border (Superior part)

ACTION
Scapular:
- Elevation
- Downward Rotation
- Abduction

Spine (Cervical):
- Lateral flexion right [Right Levator Scapulae]
- Lateral flexion left [Left Levator Scapulae]
- Rotation right [Right Levator Scapulae]
- Rotation left [Left Levator Scapulae]

Stabilization: The Levator Scapulae holds the scapula against the trunk.
RHOMBOIDS

Heads
1. Rhomboids Minor
2. Rhomboids Major

Origin
Spine:
Cervical Vertebrae (C7) [1]
Thoracic Vertebrae (T1 [1], T2-T5 [2])

Insertion
Scapula: Medial Border (Below spine)
 - Superior [1]
 - Inferior [2]

Action
Scapular:
Adduction [1, 2]
Downward Rotation [1, 2]

Stabilization: The Rhomboids holds the scapula against the thoracic wall.
LATISSIMUS DORSI

ORIGIN
Ilium, Posterior Crest
Sacrum (Posterior)
Vertebral Column
 • Lumbar Vertebrae (L1-5)
 • Thoracic Vertebrae (T7-12)
Ribs (Posterior), Lower 3 or 4 ribs

INSERTION
Humerus (Proximal Anterior/Medial)

ACTION
Shoulder: Adduction, Extension, Internal Rotation, Transverse Extension
Scapula (Assists): Depression, Downward, Rotation, Adduction

The latissimus dorsi does not extend the shoulder beyond **anatomical position** (shoulder hyperextension). In strict **transverse extension**, the latissimus dorsi is weak. Incidentally, the **posterior deltoid** is strongly involved in both shoulder hyperextension and transverse extension.
TERES MAJOR

ORIGIN
Scapula (Posterior, Inferior)
• Inferior Angle (Posterior, Lateral)

INSERTION
Humerus (Proximal Anterior/Medial)
• Medial Lip of Intertubercular Groove

ACTIONS
Shoulder:
• Extension
• Internal Rotation
• Adduction
BICEPS BRACHII

1. LONG HEAD (Outer)
2. SHORT HEAD (Inner)

ORIGIN
Scapula:
- Supraglenoid Tuberosity [1]
- Coracoid Process [2]

INSERTION
Radius
- tubercle [1, 2]
Fascia of forearm
- Bicipital Aponeurosis [1, 2]

ACTION
Elbow flexion [1, 2]
Forearm supination [1, 2]
Shoulder:
- Flexion (Weak) [2]
- Transverse Flexion (Weak) [2]

The biceps brachii is a stronger elbow flexor when the radioulnar joint (forearm) is **supinated**.

During elbow flexion, motor units in the lateral portion of the long head of the biceps are preferentially activated, whereas during forearm rotation, motor units in the medial portion are preferentially activated.
The brachioradialis is a stronger elbow flexor when the radioulnar joint (forearm) is in a midposition between supination and pronation. When the forearm is pronated, the brachioradialis is more active during elbow flexion since the biceps brachii is in a mechanical disadvantage.
The brachialis becomes more readily activated during isometric elbow flexion. During a dynamic elbow flexion, the biceps is more readily activated than the brachialis.
3. FLEXOR CARPI RADIALIS

ORIGIN: Humerus, Medial Epicondyle

INSERTION: 2nd & 3rd Metacarpals

ACTION: Wrist Flexion & Abduction; Weak elbow flexion

4. FLEXOR CARPI ULNARIS

ORIGIN: Humerus on Medial Epicondyle, Ulna (Proximal Posterior)

INSERTION: 5th Metacarpals, Carpals (Medial)

ACTION: Wrist Flexion & Adduction; Weak elbow flexion

5. PALMARIS LONGUS

ORIGIN: Humerus, Medial Epicondyle

INSERTION: 2nd, 3rd, 4th, 5th Metacarpals

ACTION: Wrist Flexion; Weak elbow flexion

The Palmaris Longus is absent on one or both sides in about 21% of people.
FOREARM EXTENSORS

2. EXTENSOR CARPI RADIALIS LONGUS

ORIGIN: Humerus on Lateral Epicondyle

INSERTION: Second Metacarpal

ACTION: Wrist extension & abduction; Weak elbow extension

3. EXTENSOR CARPI RADIALIS BREVIS

ORIGIN: Humerus on Lateral Epicondyle

INSERTION: Third Metacarpal

ACTION: Wrist extension & abduction; Weak elbow extension

4. EXTENSOR CARPI ULNARIS

ORIGIN: Humerus on Lateral Epicondyle

INSERTION: Fifth Metacarpal

ACTION: Wrist extension & adduction; Weak elbow extension
Exercise Classifications

Primary/compound (multi-joint)
Usually involves more coordination and recruitment of many muscle groups, using heavier weight loads
Example: Bench Press

Isolation (single-joint)
Involves isolating single muscle groups, and using lower weight loads
Example: Dumbbell Chest Fly
ISOLATION VS. COMPOUND EXERCISES

ISOLATION EXERCISES
+ Suitable for correcting muscle imbalances
+ Specific injury rehabilitation
+ Options for working around injuries
+ Adds greater variety

- Neglects stabilizers
- Requires more time

Does not promote:
- Sequential muscle action
- Muscle balance
- Coordination
- Positive motivation

COMPOUND EXERCISES
+ Sequential muscle action
+ Muscle balance
+ Coordination
+ Positive motivation
+ Saves time

- Limited by weaker muscles
Exercise Sequence

• Exercises spaced throughout program so as to rest one area while working another

• Compound exercises precede isolation exercises requiring the same muscle

• Exercises requiring larger muscles precede exercises requiring smaller muscles

• Exercises requiring muscles closer to the mid-line precede exercises requiring muscles further from the midline

• Exercises requiring less developed muscles precede exercises requiring more developed muscles
General Guidelines for Proper Technique

- Perform proper warm-up
- Maintain a neutral spine
- Avoid using momentum; Use controlled movements
- Use full range of motion
- Breath rhythmically (positive/concentric = exhale, negative/eccentric = inhale)
- Do not use *too much* or *too little* resistance
- Train muscle groups proportionately in a balanced manner
- Train larger muscle groups before smaller
Specific Strength Training Principles & Systems

- Muscle Confusion
- Muscle Priority
- Isolation
- Flushing
- Holistic
- Split System
- Pyramiding
- Supersets

CASE STUDY PARTNER ASSIGNMENT

Design one PRT program for your case study client in Appendix A utilizing 2 different principles/systems. Please indicate which principles/systems you chose and why.
PROGRAM DESIGN FOR FLEXIBILITY

LEARNING OBJECTIVES

1. To differentiate between BALLISTIC, DYNAMIC, STATIC and PNF stretching and understand their different applications in program design.

2. To apply an understanding of flexibility training guidelines using the O.F.I.T.T. principle.

3. To understand the application of O.F.I.T.T. in the flexibility training continuum (improvement vs. maintenance vs. over-training vs. detraining)

4. To explore controversies in the application and benefits of stretching for flexibility and injury prevention.
TYPES OF STRETCHING

BALLISTIC, DYNAMIC, STATIC, PNF
TYPES OF STRETCHING
BALLISTIC, DYNAMIC, STATIC, PNF

Muscle Spindle
Monitors changes in muscle length. When spindle fibers are rapidly stretched, a stretch reflex is elicited, causing muscle to contract.

Golgi Tendon Organ (PNF Application)
Monitors changes in muscle tension. When tension in muscle becomes too great, further contraction is inhibited, and muscle relaxes.
O.F.I.T.T.
General Guidelines for Stretching

- **Objective?**
 Dependent on client’s motivation for improving ROM…specific to a certain performance, fitness and/or health standard.

- **Frequency?**
 No upper limits on number of flexibility training components per week.

- **Intensity?**
 Dependent upon 1) degree of discomfort during stretch, and 2) holding time. “Comfortably uncomfortable”

- **Time?**
 Dependent upon 4 factors: # of stretches, holding time, # of sets per stretch, rest between sets/stretch.

- **Type?**
 Only static or PNF; Stretches for each joint.
ANATOMY (Lower Body) & PROGRAM DESIGN

LEARNING OBJECTIVES

1. To know the origin, insertion and line of action for the muscles of the lower body including the GLUTES, ABDUCTORS, ADDUCTORS, QUADRICEPS, HAMSTRINGS, and CALVES.

2. To apply knowledge of anatomy to effective exercises and be able to distinguish between the agonists, antagonists, synergists and stabilizers.

3. To learn proper exercise and spotting technique and practice exercise instruction using the Seven Step Process.

4. To apply the Principles of Training and specific program design methods in the instruction and performance of mini exercise routines for different muscle groups.
Rectus abdominus controls the tilt of the pelvis and curvature of the lower spine. It also tilts pelvis forward improving the mechanical positioning of the erector spinae.
OBLIQUES

ORIGIN
External Oblique:
- Outer surface of lower ribs (8-10)
Internal Oblique:
- Iliac crest & Lumbar fascia

INSERTION
External Oblique:
- Linea alba & Iliac crest
Internal Oblique:
- Costal cartilage of ribs 8-10, xiphoid process & Linea alba

ACTION
External Oblique:
- Trunk Flexion, Twists trunk to opposite side
Internal Oblique:
- Trunk Flexion, Twists trunk to same side

1. External Oblique
2. Internal Oblique
TRANSVERSE OBDOMINUS

ORIGIN
Iliac Crest, Lumbar Fascia, Inguinal Ligament
Costal Cartilages of ribs 6-12

INSERTION
Xiphoid Process of Sternum
Linea alba
Pubic Crest via the conjoint tendon

ACTION
Compresses abdomen (assists with forced expiration)
Intra-abdominal pressure

The Obliques and the Transverse Abdominus increase the intra-abdominal pressure necessary for the support of the vertebral column in some exercises. With the assistance of the Rectus Abdominus and Obliques, the Tranverse Abdominus hold the abdomen flat.
ERECTOR SPINAES

Heads
1. *Iliocastalis* (Lumborum, Thoracis, Cervicis)
2. *Longissimus* (Thoracis, Cervicis, Capitis)
3. *Spinalis* (Thoracis, Cervicis, Capitis)

ORIGIN
Crest of Ilium, Lumbar and Thoracic vertebrae

INSERTION
Angles of ribs 6-12, all thoracic vertebrae, cervical vertebrae, temporal bone (mastoid process)

ACTION
Extension of spine
Extension of head
Hyperextension
Lateral Flexion
QUADRICEPS

Heads
1. Rectus Femoris
2. Vastus Lateralis (Externus)
3. Vastus Intermedius
4. Vastus Medialis (Internus)

ORIGIN
Ilium: Illiac Spine (Anterior Inferior)
[1]
Femur:
 Lateral Surface [2]
 Anterior Surface [3]
 Medial Surface [4]

INSERTION
Tibia: Tibial Tuberosity, Patellar
Tendon [1, 2, 3, 4]

ACTION
Knee Extension [1, 2, 3, 4]
Hip Flexion [1]
HAMSTRINGS

ORIGIN
Ischium: Ischial Tuberosity [1, 3, 4]
Femur (posterior): [2]
 Linea Aspera, Lateral Condyloid Ridge

INSERTION
Tibia: Lateral Condyle [1, 2], Medial Condyle [3, 4]
Fibula: Head [1, 2]

ACTION
Knee:
Flexion [1, 2, 3, 4]
External Rotation [1, 2]
Internal Rotation [3, 4]
Hip:
Extension [1, 3, 4]

Heads
1. Biceps Femoris, Long Head
2. Biceps Femoris, Short Head
3. Semitendinosus
4. Semimembranosus
GLUTEUS MAXIMUS

ORIGIN
- Ilium, Crest (Posterior)
- Sacrum (Posterior)
- Fascia of the Lumbar Area

INSERTION
- Femur, Gluteal Line
- Tibia, Lateral Condyle & Iliotibial Tract

ACTION
- Hip:
 - Extension [1, 2]
 - External Rotation [1, 2]
 - Transverse Abduction [1, 2]
 - Adduction [2]
GLUTEUS MEDIUS

ORIGIN
Ilium, External Surface just below crest:
 (Anterior) [1]
 (Posterior) [2]

INSERTION
Femur, Greater Trochanter
 (Posterior and Lateral Surface) [1, 2]

ACTION
Hip:
 Abduction [1, 2]
 Transverse Abduction [1, 2]
 Internal Rotation [1]
 External Rotation (during Abduction) [2]

Steadies pelvis so it does not sag when opposite side is not supported with leg.

Heads
 1. Anterior Fibers
 2. Posterior Fibers
ORIGIN
Ilium: External Surface
(Below the origin of the Gluteus Medius)

INSERTION
Femur: Greater Trochanter (Anterior Surface)

ACTIONS
Hip:
Abduction
Transverse Abduction
Internal Rotation (during Abduction)

Assists the Gluteus Medius with pelvic stability so it does not sag when opposite side is not supported with leg.
ILIOPSOAS

ORIGIN
- Ilium [1]: Inner Surface
- Sacrum [1]: Base
- Vertebral Column (Lateral Surface) [2]:
 - Thoracic Vertebrae (T-12)
 - Lumbar Vertebrae (L1-5)
 - Intervertebral Discs

INSERTION
- Femur:
 - Lesser Trochanter [2]
 - Shaft below Lesser Trochanter [1]
- Tendon of Psoas Major & Femur [1]

ACTION
- Hip Flexion [1, 2]
- Spine (Thoracic & Lumbar) Rotation [2]

Heads
- 1. Iliacus
- 2. Psoas (Major & Minor)
SARTORIUS

ORIGIN
Ilium: Iliac Spine (Anterior Superior)

INSERTION
Tibia: Medial Condyle (Anterior)

ACTIONS
Hip:
- Flexion
- Abduction
- External Rotation
Knee:
- Flexion
ORIGIN
Pubis

INSERTION
Tibia (Superior), Medial surface

ACTIONS
Hip:
• Adduction
• Transverse Adduction
Knee:
• Flexion
ADDUCTOR BREVIS, MAGNUS, LONGUS

ORIGIN
Pubis [1, 2, 3]
Ischium [3]

INSERTION
Femur (medial):
• Lesser Trochanter [1]
• Linea Aspera [1, 2, 3]
• Medial Condyle Ridge [3]

ACTION
Hip:
• Adduction [1, 2, 3]
• Transverse Adduction [1, 2, 3]
• Flexion (initial) [1, 2]
• Extension [3]
• External Rotation (during adduction) [1, 3]
GASTROCNEMIUS

ORIGIN
Femur:
- Medial Condyle (Posterior) [1]
- Lateral Condyle (Posterior) [2]

INSERTION
Calcaneous, Achilles Tendon [1, 2]

ACTION
Ankle: Plantar Flexion [1, 2]
Knee: Flexion [1, 2]

In moderate force, *soleus* is preferentially activated in the **concentric** phase, whereas gastrocnemius is preferentially activated in the **eccentric** phase. Gastrocnemius becomes even more activated at higher lengthening velocities. During hopping, the gastrocnemius, with its greater proportion of FT motor units, is preferentially activated over soleus. During stationary cycling, gastrocnemius is also preferentially activated at higher pedaling speeds.

Although involvement of the lateral and medial heads would not seem to be altered by **medial** or **lateral rotation of the hip**, MRI research suggests "toes in" activates both heads and "toes out" activates medial head to a higher degree.
SOLEUS

ORIGIN
Tibia (Upper Posterior)
Fibula (Upper Posterior)

INSERTION
Calcaneous, Achilles Tendon

ACTION
Ankle: Plantar Flexion

In the seated calf raise (knees flexed to 90º), the gastrocs are virtually inactive while the load is borne almost entirely by the soleus.

In moderate force, the soleus is preferentially activated in the concentric phase, whereas the gastrocnemius is preferentially activated in the eccentric phase.
TIBIALIS ANTERIOR

ORIGIN
Tibia (Lateral)

INSERTION
Tarsal: Cuneiform (Medial)
Metatarsal (First)

ACTION
Ankle:
- Dorsal Flexion
- Inversion (Supination)
LEARNING OBJECTIVES

1. To understand the application of Newton’s laws of motion (i.e. inertia, acceleration, reaction) in exercise performance.
2. To understand force production relative to muscle length and position of muscle attachment.
3. To understand the factors which influence efficiency of movement.
4. To understand lever lengths relative to rotation and force production.
The Essentials of Biomechanical Concepts

- **Motion Analysis**
 (movement pattern/muscle sequence, forces, lever arms, acceleration)

- **Force** (magnitude, direction, internal, external)

- **Torque**

- **Levers**

- **Stability**
Planes of Motion

Movements occur in one of three planes of motion.

PARTNER EXERCISE: Determine the plane of movement for each of the exercises in Chapter 5.
LEVERS

A lever is a rigid bar that rotates about an axis.

- Rotation is caused as force is applied to the lever.
- Two types of force act upon human levers, they are:
 - Muscular force
 - Resistive force
The Lever

- **Fulcrum** is the pivot point of a lever (joint).
- **Lever Arm** is the segment of the body (arm or leg) which is being moved about the fulcrum.
- **Moment Arm** is the perpendicular distance from the applied force to the fulcrum.

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

lever attached to fulcrum
LEVER SYSTEMS

(a) Class I lever
(b) Class II lever
(c) Class III lever
Torque

Is the degree to which a force tends to rotate a lever about a fulcrum.

Torque = F (rotational) x D (moment arm or force arm)

PARTNER EXERCISE:

1. Rank the following exercises in order according to which one produces the least amount of torque about the spine to the greatest.

 BB Squat
 BB Front Squat
 Good Mornings
 Stiff-Legged Deadlift

2. In what ways could proper technique reduce torque about the spine when squatting?
FORCE APPLICATIONS

GROUP EXERCISE: Provide an example for each of the following where the force either a) contributes to the intention of the exercise/movement, or b) works against the intention of the exercise/movement.

1. Static Friction
2. Kinetic Friction
3. Elastic Force
4. Air Resistance
5. Water Resistance
PARTNER EXERCISE: Based upon the magnitude and direction of forces acting through the knee joint, rank the following versions of the lunge from the least stressful to the most stressful on the knees.

- Reverse Lunge
- Forward Lunge
- Stationary Lunge
INTERNAL FORCES

BIOMECHANICAL FACTORS AFFECTING MUSCLE FORCE

1. Length of Muscle (Optimal = 1.2x resting length)
2. Velocity of Muscle Contraction
 - Concentrically: force decreases as velocity increases
 - Eccentrically: force increases as velocity increases
3. Tendon Insertion
4. Changing Joint Angle
PARTNER EXERCISE: Choosing one body part, provide a specific exercise example for manipulating each of the following factors in order to increase force generation in the muscle:

a) Stabilizing body segments
b) Increasing the range of motion of a particular exercise
c) Varying the speed of muscular contraction
d) Utilizing sequential movement
e) Increasing distance force is applied in selection of an exercise
f) Using strongest muscles available for a task
g) Using all the muscles that can contribute to a task
h) Pre-stretching a muscle just prior to contraction
i) Pre-loading the muscle prior to the task